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In support of the U.S. Tox21 program, we have developed

a simple and chemically intuitive model we call weighted feature

significance (WFS) to predict the toxicological activity of

compounds, based on the statistical enrichment of structural

features in toxic compounds. We trained and tested the model on

the following: (1) data from quantitative high–throughput

screening cytotoxicity and caspase activation assays conducted

at the National Institutes of Health Chemical Genomics Center,

(2) data from Salmonella typhimurium reverse mutagenicity

assays conducted by the U.S. National Toxicology Program, and

(3) hepatotoxicity data published in the Registry of Toxic Effects

of Chemical Substances. Enrichments of structural features in

toxic compounds are evaluated for their statistical significance

and compiled into a simple additive model of toxicity and then

used to score new compounds for potential toxicity. The predictive

power of the model for cytotoxicity was validated using an

independent set of compounds from the U.S. Environmental

Protection Agency tested also at the National Institutes of Health

Chemical Genomics Center. We compared the performance of our

WFS approach with classical classification methods such as Naive

Bayesian clustering and support vector machines. In most test

cases, WFS showed similar or slightly better predictive power,

especially in the prediction of hepatotoxic compounds, where

WFS appeared to have the best performance among the three

methods. The new algorithm has the important advantages of

simplicity, power, interpretability, and ease of implementation.
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cell viability; caspase-3,7 activation; in vivo toxicity.

Accurate and efficient assessment of the potential toxicity of

drugs in development and environmental chemicals remains

a significant scientific challenge (Collins et al., 2008; Kola and

Landis, 2004). Predictive computational models can complement

experimental approaches for prioritizing and focusing toxicity

testing and may therefore decrease the time and cost associated

with testing as well as reducing or replacing the need for animal-

based studies (Pritchard et al., 2003). Descriptor-based quanti-

tative structure-activity relationship (QSAR) models (Hansch and

Fujita, 1964) have been commonly used for toxicity prediction

(Mohan et al., 2007). The quality of these models depends on the

mathematical approach, the molecular descriptors for the

particular toxicity end point, and the quality of the data used to

develop the model (Pohjala et al., 2007). The predictive value of

a QSAR model is often limited by the nature of the compounds

used in model development, and such models frequently work

well only on small sets of structurally related compounds and

a single defined toxicity target. Toxicological data from more

diverse noncongeneric compound series are required to develop

models with more general predictive value (Schultz et al., 2001).

Chemical toxicity often originates from interactions between

certain functional groups and physiologically important bi-

ological targets. Some functional groups have been demonstrated

to react chemically with biopolymers and serve as structural alerts

for potential toxicity (Evans et al., 2004; Guengerich, 2005;

Guengerich and MacDonald, 2007; Kalgutkar et al., 2005;

Nelson, 1994). In this context, fragment-based QSAR models

have been developed in an effort to identify biologically active

substructures (toxicophores) responsible for toxicity (Casalegno

et al., 2006; Perez Gonzalez et al., 2003; Toropov and Benfenati,

2006). Unlike descriptor-based QSAR models, which are holistic

approaches, fragment-based toxicophore methods investigate

structure-activity relationships at the substructural level, allowing

more precise relationships between structures and toxic effects to

be defined. The toxicophores are then used to predict potential

toxicity in other compounds, on the assumption that substances

containing the same toxicophore are likely to cause similar toxic

effects. These models have been used to predict pesticide toxicity

for small sets of compounds and have shown reasonable

predictive values (Casalegno et al., 2006). Some commercial
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efforts have also been made to generalize this approach to other

problems in toxicity (Enslein et al., 1994; Klopman, 1984;

Klopman, 1992; Klopman et al., 2004; Sanderson and Earnshaw,

1991; Smithing and Darvas, 1992; Woo et al., 1995), although

these systems have been shown to have limited prognostic utility

(Guengerich and MacDonald, 2007).

Two of the biggest challenges faced by computational

modeling for toxicity prediction are the diversity of compound

structural space and the multiplicity of structures that can produce

the same toxicological outcome. Traditional modeling methods

rely heavily on structural similarity for activity prediction and

have difficulty with structurally diverse compounds (i.e., these

models often cannot be extended to structurally unrelated

compound sets). At the same time, chemical similarity is not

very predictive of biological responses, particularly in the area of

toxicology (Martin et al., 2002). There are usually multiple

groups of molecules that can affect the same target or generate the

same toxicity, and structurally unrelated compounds may

produce the same toxicity via different mechanisms (Guengerich

and MacDonald, 2007). It is therefore difficult for similarity-

based models to recognize structurally distinct compounds as

toxic without compromising model specificity.

We have developed a new fragment-based approach to

modeling toxicity that was designed to alleviate the problem of

having to rely on whole molecule similarity for toxicity

prediction, allowing our model to achieve good performance

with structurally diverse sets of compounds. Models were

developed for four different toxicity end points including

in vitro cytotoxicity measured by cell viability (Xia et al.,
2008) and caspase-3,7 induction (Huang et al., 2008) in

different cell types, Salmonella typhimurium mutagenicity

(Ashby and Tennant, 1991) as well as hepatotoxicity (Collins

et al., 2008). The performances of all models were rigorously

assessed using receiver operating characteristic (ROC) curves

(Schoonjans, 2005). In addition, to evaluate the external

validity of the cytotoxicity model, we used it to predict the

cytotoxicity of an independent set of compounds from the U.S.

Environmental Protection Agency (EPA), which included

structures that were distinct from those in the training set

provided by the National Toxicology Program (NTP).

Following computational prediction, the EPA compounds were

tested experimentally to assess predictive accuracy. Model

performance was also compared with two standard classifica-

tion algorithms: Naive Bayesian and sequential minimal

optimization (SMO) (Duda et al., 2000; Platt, 1999). The

latter is a high-performance kernel-based classification method

(Schölkopf et al., 1999).

MATERIALS AND METHODS

Data Sets

A brief description of each data set is shown in Table 1. Cytotoxicity (Xia et al.,
2008) and caspase-3,7 activation (Huang et al., 2008) data used in the training/test

sets were generated on 1408 chemicals (1353 unique) supplied by the NTP

(PubChem, 2007c) and tested in 13 different cell types representing different

human and rodent tissue origins (Xia et al., 2008). The cell types included human

embryonic kidney cells (HEK293), human hepatocellular carcinoma cells

(HepG2), human neuroblastoma cells (SH-SY5Y and SK-N-SH), human

leukemia T cells (Jurkat), human normal foreskin fibroblasts (BJ), human normal

lung fibroblasts (MRC-5), human normal vascular endothelial cells (HUVEC),

human renal mesangial cells, rat hepatoma cells (H4-II-E), rat primary renal

proximal tubule cells, mouse neuroblastoma cells (N2a), and mouse fibroblasts

(NIH 3T3). Cytotoxicity data used in the validation test set were generated on an

independent set of 1408 compounds (1351 unique) from the EPA (PubChem,

2009). Validation data for the EPA compounds were generated on three kidney

cell types: human HEK293 cells, human renal mesangial cells, and rat primary

renal proximal tubule cells. For replicated compounds in a collection, the replicate

values were averaged such that each unique compound only has one data value.

All the normalized cytotoxicity (PubChem, 2007b) and caspase-3,7 (PubChem,

2007a) data obtained for the 13 cell types have been deposited into PubChem

(http://www.ncbi.nlm.nih.gov/sites/entrez?db¼pcassay, search term ‘‘NCGC

[sourcename] AND viability AND NIEHS’’, or search term ‘‘NCGC[source-

name] AND caspase AND NIEHS’’).

Based on each chemical’s activity in terms of cytotoxicity or caspase-3,7

activation across the 13 cell types, a score was generated for each end point.

Briefly, all compounds were tested at 14 different concentrations ranging from

0.23 to 100lM and then designated as classes 1–4 according to the type of

concentration-response curve observed (Inglese et al., 2006). Curve classes are

heuristic measures of data confidence, classifying concentration responses on

the basis of efficacy, number of data points showing above background activity,

and the quality of fit. Compounds with concentration-response curve classes of

1, 2, or 3 in these assays were designated as being active with decreasing degree

of confidence, and compounds with class 4 curves were considered inactive

over the concentration range tested (see Inglese et al., [2006] for a more

detailed description of curve classification). Table 2 shows the curve class

scoring scheme, where compounds are assigned a score of 0–10 on the basis of

curve quality. Using this approach, each compound was assigned a score in

each of the 13 cell viability and 13 caspase-3,7 activator screens across the

training/test compound sets. For the purposes of this study, a compound was

TABLE 1

Toxicity Data Sets

Data set Source Sample no. % Toxic

Unique structural

feature no.

Cell viability NCGC/NTP 1408 6.3 2949

Cell viability NCGC/EPA 1408 7.2 3596

Caspase activation NCGC/NTP 1408 5.6 2949

Salmonella NTP 1105 33 2545

Hepatotoxicity RTECS 1755 6.6 4757

Note. NCGC: National Institutes of Health Chemical Genomic Center.

TABLE 2

Cytotoxicity Scoring Scheme Based on Curve Class

Curve class Score

1.1 10

2.1 8

1.2 7

2.2 5

Other non-4 2

4 0
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classified as ‘‘pan-cytotoxic’’ or as a ‘‘pan-caspase-3/7 activator’’ if it had an

average score of � 5 in the cell viability assays or � 1 in the caspase-3,7 assays.

Generally, compounds with class 1 or 2 curves are considered active or

cytotoxic and class 3 curves inconclusive because of lower data quality.

However, many compounds had bell-shaped curves in the caspase-3,7

activation assays due to cell death at high concentrations, and concentrations

greater than the concentration of maximal response were masked for regression

purposes (Huang et al., 2008). As a result, these compounds were classified as

class 3 but were still reliable actives. Since compounds with class 1 or 2 curves

were assigned a score of 5 or above and class 3 compounds were scored

between 1 and 4, we chose the score of 5 as the cutoff for activity in the cell

viability assays and 1 as the cutoff for activity in the caspase-3,7 assays. The

score was averaged across all 13 cell types for the NTP compound collection

for which measurements were available from all cell types, and the average

scores from the three renal cell types were used for the EPA collection, which

was only tested in these three cell types. Of the 1353 unique compounds tested

in these two assays, 82 (6%) and 73 (5%) were classified as pan-cytotoxic or

pan-caspase-3/7 activation, respectively, using this criteria.

Salmonella mutagenicity data on 1105 compounds generated by the NTP

were obtained from the Leadscope toxicity databases (Anonymous, 2009;

Zeiger, 1996). In this data set, compounds are assigned a score of either 1 or 0,

one being positive and zero negative. Of the 1105 compounds tested in this

battery, 352 (32%) were defined as mutagenic with a positive score of 1.

Hepatotoxicity data on 1755 compounds extracted from the Registry of

Toxic Effects of Chemical Substances (RTECS) database were also obtained

from Leadscope (RTECS, 2007). In this database, hepatotoxicity is scored on

a categorical scale from 0 to 5. For our modeling exercises, we classified

compounds with a score of 4 or 5 as hepatotoxic; this accounted for 105 (6.6%)

of the compounds. The purpose of applying relatively stringent criteria for

defining toxicity is to ensure data confidence and limit interference from noise

in order to build meaningful models.

Modeling Algorithms

Weighted feature significance. Weighted feature significance (WFS) is

a two-step scoring algorithm. In the first step, a Fisher’s exact test is used to

determine the significance of enrichment for each structural feature in the active

compounds compared to the inactive compounds, and a p value is calculated for all

the structural features present in the data set. Structural features for each compound

set were exported from Leadscope; these fingerprints are used here only as an

illustrative example and could be substituted by any other nonproprietary

structural fingerprints. If a feature is less frequent in the active compound set than

the inactive compound set, then its p value is set to 1. These p values form what we

call a ‘‘comprehensive’’ feature fingerprint, which is then used to score each

compound for its toxicity potential according to Equation 1, where pi is the p value

for feature i; C is the set of all features present in a compound; M is the set of

features encoded in the comprehensive feature fingerprint (i.e., features present in

at least one cytotoxic compound); N is the number of features; and a is the

weighting factor, which is a constant between 0 and 1. a is normally set to 1 unless

otherwise indicated. Cytotoxic compounds are expected to have a high frequency

of toxic features and therefore a high WFS score:

WFS ¼
P

logðpiÞ
minðlogðpiÞÞ3 ðaNC�M þ NM\CÞ

: ð1Þ

Naive Bayesian and SMO. These two classical modeling algorithms were

applied to the same data sets to compare to the performance of the WFS

algorithm. We selected these two algorithms for comparison because they are

among the most widely used and successful methods for classification and

toxicity prediction (Bahler et al., 2000; Cronin, 2004; von Korff and Sander,

2006). We used the Weka implementation (Witten and Frank, 2000) of these

algorithms to perform modeling exercises.

Model Training and Testing

Models were built for each type of response measured in the four different

data sets: pan-cytotoxicity using cell viability data from 13 cell types, pan-

caspase-3,7 activation using the caspase-3,7 data from the same 13 cell types,

Salmonella mutagenicity data, and hepatotoxicity. For each data set, compounds

were evenly divided after random shuffling into two groups of approximately

equal size, with one designated as training and the other as testing. Models were

built using only data generated from compounds in each training set. The model

was then applied to predict the response of compounds in the corresponding

testing set. In the case of the WFS algorithm, active feature frequencies were

computed using data from the training set and WFS scores were calculated using

these p values for compounds in both the training and the testing sets. For the

validation of the pan-cytotoxicity prediction model, the model was trained on data

from the NTP compound collection and applied not only to the NTP test set but

also to the EPA collection. The number of compounds identified as true or false

positive (TP, active and predicted as active and FP, not active but predicted as

active) and true or false negative (TN, not active and not predicted as active and

FN, active but not predicted as active) was counted. To assess the overall

performance of a model, ROC curves were generated by plotting sensitivity

(defined as TP/[TP þ FN]) against 1-specificity (defined as TN/[FP þ TN]). The

area under the ROC curve (AUC) is a rigorous measure of the predictive power of

the model. A maximum AUC is 1, which occurs when a model is 100% accurate.

A model with an AUC of 0.5 indicates that applying the model is no different than

picking compounds at random. A model with an AUC of 0.7 is generally

considered as reasonably predictive.

RESULTS

Modeling Cytotoxicity Data to Predict Pan-cytotoxicity

The 1353 compounds in the NTP collection were randomly

divided into two sets of approximately equal size, using one set

for training and the other one for testing. WFS scores were

calculated for compounds in both the training and the testing sets.

When the WFS scores were applied to predict compound pan-

cytotoxicity in the training set, an AUC of 0.92 was obtained

(Fig. 1). Using the optimal WFS score cutoff (i.e., when both

specificity and sensitivity are maximized), the model can achieve

FIG. 1. ROC curves for the prediction of cytotoxic compounds in the

training and testing compound sets using cell viability data generated on the

NTP collection. WFS scores were calculated using feature p values generated

from the training compound set. The predictive power of the model decreased,

but is still significantly better than random, when applied to the testing

compound set as indicated by the reduction in the AUC.
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83% sensitivity and 86% specificity. This means that the model

can correctly identify 83% of the toxic compounds and 86% of

the nontoxic compounds in the training compound set. If

sensitivity is maximized to 95% (i.e., 95% of the toxic

compounds are identified), the specificity of the model decreases

to 74%. Conversely, when specificity is maximized to 95% (i.e.,

95% of the nontoxic compounds are correctly identified), the

sensitivity of the model drops significantly to 52%. When the

WFS scores were applied to predict pan-cytotoxic compounds in

the testing set, the AUC decreased to 0.74 (Fig. 1). Decreases in

model performance for the test set versus the training set are quite

common and are expected because the testing set of compounds

may contain structure features not captured by the training

compound set from which the model was derived. Nonetheless,

an AUC of 0.74 on the test set indicates that this is a good

predictive model.

Validation of the Pan-cytotoxicity Prediction Model

Though the WFS model performed well in predicting the

pan-cytotoxicity of the Tox21 NTP test compounds, we wished

to further examine the general applicability of the model in

predicting pan-cytotoxicity among an independent set of

chemicals. For this analysis, we generated cell viability data

on a collection of 1408 Tox21 compounds (1351 unique)

nominated by the EPA and excluded in the model testing the

253 compounds which were also in the NTP set, for a final

number of 1098 compounds. First, each EPA compound was

predicted to be pan-cytotoxic or ‘‘not cytotoxic’’ using the

WFS model. Experimental cell viability data were then

generated using the same concentration-response quantitative

high–throughput screening (qHTS) paradigm used for the NTP

chemicals (Xia et al., 2008); three kidney-derived cell types,

HEK293, human mesangial cells, and rat proximal tubule cells,

were assayed. Using these data, a cytotoxicity score of 0–10

was calculated for each compound in each of the three cell

types (Table 2). As stated earlier, compounds with a mean score

of � 5 were designated as experimentally pan-cytotoxic,

whereas compounds with a mean score of < 5 were designated

as ‘‘noncytotoxic’’. Comparing predicted versus experimental

designations, the WFS model yielded an ROC with an AUC of

0.72 (Fig. 2), demonstrating a high degree of predictability,

comparable to the AUC (0.74) obtained from the NTP testing

set. If only data generated from the three kidney cell types were

used to build the model, the AUC obtained from predicting the

EPA collection dropped slightly to 0.70, indicating that data

from only three cell types are probably not as robust as data from

all 13 cell types in predicting pan-cytotoxicity.

The number of unique structure features in the EPA

compound set was 3596, only 2341 (65%) of which were also

present in the NTP compound set. Of the 190 features that were

significantly enriched in the EPA compounds found to be

experimentally pan-cytotoxic, 179 (94%) were present in the

NTP collection but only 96 (50%) were evaluated as

significantly toxic. This shows that, as expected, not all

cytotoxic structural features could be covered by a relatively

small, though diverse, compound collection such as the NTP

collection; accordingly, the current WFS model has good, but

imperfect, predictive power. The slightly lower AUC for the

EPA compound toxicity prediction may also reflect the use of

only three cell types to test the model on the EPA compounds

compared to data on 13 cell types used to predict cytotoxicity

of the NTP compounds. The accuracy of the model is expected

to improve as data on more compounds become available from

the Tox21 collaboration (Collins et al., 2008), more compound

features responsible for toxicity are captured, and more

experimental cytotoxicity data are generated.

Comparison of WFS with Other Classification Algorithms

Table 3 lists the AUCs from other classification algorithms,

Naive Bayesian and support vector machines (SVM) (SMO

with and without logistic model), for four different toxicity data

sets. For the prediction of EPA compound cytotoxicity based

on the NTP compound collection, the WFS algorithm

outperformed Naive Bayesian and had predictive power

comparable to SMO without a logistic model but the logistic

SMO had the best performance of the four algorithms by

a slight margin, with an AUC of 0.75. The ROC plots of the

three different modeling results are shown in Figure 2 (only the

logistic SMO is shown for SVM). Comparing the ROC curves

of WFS and SVM, SVM outperformed WFS in the first half of

the ROC plot, where SVM achieved its optimal predictive

power with 86% specificity and 63% sensitivity, whereas WFS

outperformed SVM slightly in the later half of the ROC plot,

where it had better sensitivities at the same specificity levels as

SVM. These results may be due to the difference in the basis of

the two algorithms. The WFS algorithm is fragment based,

1-Specificity

ytivitis
ne

S

FIG. 2. ROC curves for the prediction of cytotoxic compounds in the EPA

collection using three different modeling approaches: WFS, Naive Bayesian,

and SMO. Models are trained on data generated from compounds in the NTP

collection.

388 HUANG ET AL.



whereas SVM relies more on whole molecule similarity;

therefore, nontoxic compounds with toxic features could have

high WFS scores but low SMO scores, whereas toxic

compounds that do not a whole structurally similar counterpart

in the training set will have low SMO scores but could still

have high WFS scores. Consequently, the WFS is likely to

have a higher false-positive rate at higher WFS score ranges

(earlier half of the ROC plot); in contrast, SVM tends to have

higher false-negative rates at lower SMO score ranges (later

half of the ROC plot).

A compound’s ability to activate caspases (caspase-3,7 in

this particular study) and cause apoptosis is another measure of

cytotoxicity. When modeling caspase activation data on the

NTP compound collection using the four classification

algorithms, the Naive Bayesian approach achieved the best

performance with an AUC of 0.75 for the test set; WFS came in

second, with a reasonably good testing AUC of 0.71; and

neither of the SVM methods performed as well as the other

methods with AUCs less than 0.7. The large decrement (> 30%

difference in AUC) in the predictive power of the SVM models

when applied to the test sets indicates that the models fit the

training data nearly perfectly but did not extrapolate well to

new sets of compounds, suggesting overfitting during model

building, leading the algorithm to interpret noise in the training

data as true signals. In contrast, the other two algorithms, WFS

and Naive Bayesian, only had a 15–17% difference between

their training and testing AUCs, suggesting a better applicability

of these methods to new compounds. Figure 3 shows the ROC

plots of the different modeling approaches. The figure shows

that Naive Bayesian outperformed WFS mainly in the later

portion of the ROC curve, where Naive Bayesian had better

sensitivities than WFS at the same specificity levels. However,

at this part of the curve, both the WFS scores and the Bayesian

scores are in their lower ends and the false-negative rates are low

for both algorithms. Only a few compounds are identified as

false negatives, and the differences between the two algorithms

are statistically insignificant (Fisher’s exact test: p > 0.05).

All three methods, WFS, Naive Bayesian and SVM (SMO

with logistic model), had very similar performances on

indentifying compounds that are mutagens (NTP’s Salmonella
assay), with testing AUCs of 0.76–0.78; the only exception

being nonlogistic SMO, which had an AUC of 0.69 only. WFS

appeared to have the best performance of all three methods on

the prediction of hepatotoxic compounds, with an AUC of

0.67, whereas the other methods had AUCs ranging from 0.61

to 0.64. Furthermore, WFS also had the smallest drop in

predictive power when applied to a new set of compounds,

with only a 16% difference between its training and testing

AUCs. In contrast, the nonlogistic SVM method had the worst

performance, and both SVM methods again showed signs of

overfitting with nearly perfect training AUCs but huge loss

(35%) in predictive power when applied to the testing set. The

ROC plots of the results from the three modeling approaches

are shown in Figure 4. At the optimal WFS score cutoff, the

model had a sensitivity of 63% and a specificity of 61%.

Structural Features Responsible for Toxicity

One of the advantages of the WFS algorithm is that it

identifies structural features that might be responsible for

toxicity. The structural features found most significantly

enriched in the toxic compounds in the NTP collection are

listed in Supplementary Table 1a. Many of these features are

TABLE 3

Comparison of Model Performance in Terms of AUCs of ROCs on Four Different Data Sets

Modeling algorithm

Cell viability

(NTP training/test)

Cell viability

(EPA test)

Caspase activation

(training/test)

Salmonella

(training/test)

Hepatotoxicity

(training/test)

WFS 0.92/0.74 0.72 0.88/0.71 0.81/0.77 0.83/0.67

Naive Bayesian 0.89/0.72 0.67 0.90/0.75 0.82/0.76 0.86/0.62

SMO 0.99/0.69 0.74 0.99/0.68 0.95/0.69 0.96/0.61

SMO (logistic model) 1/0.78 0.75 0.99/0.66 0.99/0.78 0.99/0.64

1-Specificity

ytivitis
ne

S

FIG. 3. ROC curves for the prediction of compounds that activated caspase-

3,7 in the testing compound set of the NTP collection using three different

modeling approaches: WFS, Naive Bayesian, and SMO. Models are built using

data generated from the training compound set. The predictive power of the

model decreased, but is still significantly better than random, when applied to the

testing compound set as indicated by the reduction in the AUC.
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substituted/activated benzenes, 1,3-dienes, imines, quinones,

nitrogen containing heterocycles (e.g., piperidines, pyridines,

pyrans, pyrrolidines), and halogenated groups, most of which

are known reactive groups susceptible to bioactivation

(Guengerich and MacDonald, 2007); others are new structural

features identified to contribute to compound toxicity. Not

surprisingly, heavy metals showed up as one of the most

significant toxic features. In the NTP collection, compounds

containing metals include mercury, chromium, and cobalt

compounds, which are well-known toxic compounds.

Cytotoxic compounds were identifiable by the presence of

certain structural features. However, very few features were found

significantly enriched in the ‘‘inactive’’, or noncytotoxic com-

pounds (Supplementary Table 1b). The most prominent feature

among the few identified as significant was carboxylic acid,

which is a functional group very common in biological

chemicals, including all amino acids. It thus appears that the

presence of this feature in a compound mitigates against

toxicity. However, correlation with cytotoxicity or its absence

currently does not allow firm prediction of cytotoxic properties of

compounds containing them; these effects are likely to be context

dependent and will be defined further as the Tox21 data set grows.

As a general rule, compounds that are not cytotoxic have very few

features in common, and the reason for their lack of cytotoxicity is

more likely due to the absence of toxic features than the presence

of specific nontoxic or toxicity-protective features.

A set of significant features was also identified for

compounds that activated caspase activity (Supplementary

Table 2) in the NTP collection. There were 235 features with

p < 0.05, 173 (74%) of which overlap with significant toxic

features (Supplementary Table 1a) identified based on cell

viability data. This was not surprising since the compounds that

activated caspase activity were roughly a subset of the

compounds that reduced cell viability as caspase activation is

one of the mechanisms that cause cell death. However, the

order of significance for those features for caspase activation is

different than reducing cell viability or cytotoxicity in general.

Cyclic alkyl ketones and alkyl halides became the most

dominant features in the caspase-activating compounds,

suggesting that these features may be responsible for the

caspase activation of the compounds. Unlike the features that

could be used to identify cytotoxic compounds, the features

significant in compounds activating caspase could be used to

predict or identify compounds that kill cells through one

particular mechanism (i.e., caspase activation). Organohalogen

compounds (e.g., polychlorinated biphenyls, dichlorodiphenyl-

trichloroethane, and polybrominated diphenyl ethers) are

known to cause hepatotoxicity (Sonne et al., 2005). Organo-

halides were also identified by our model as the most

predominant features among the structural features signifi-

cantly enriched in the hepatotoxic compounds (Supplementary

Table 3). The fact that these features are also predictive of

caspase activation suggests that cell death through caspase

activation might be one of the mechanisms for hepatotoxicity

caused by these compounds. In addition to the organohalides,

other features significant for hepatotoxicity were also found to

overlap with features significant in caspase-activating com-

pounds and features that caused reduction in cell viability. The

overlaps between the hepatotoxic features and the other two

sets of toxic features were roughly 30 and 40%, respectively,

indicating that certain features that can cause cytotoxicity will

also cause toxicity in vivo. As the compound set used for the

Salmonella mutagenicity model may include compounds that

require metabolic activation, the structural features predicted

by the model that contribute to the mutagenicity of a compound

may be affected (Kalgutkar et al., 2005). A more careful

analysis will be conducted in a follow-up study that takes into

consideration the metabolic potential of compounds.

DISCUSSION

Data Quality and Model Performance

The cytotoxicity prediction model was built using cell viability

data from 13 cell types for the prediction of pan-cytotoxic

compounds. To test if a model can be built using data from

a single cell type to predict cytotoxicity of a new compound in that

cell type, we built a model for each of the three kidney-derived

cell types, HEK293, human mesangial, and rat renal proximal

tubule. We trained the models on data from the NTP collection

and tested the models on the EPA collection. Table 4 lists the

AUCs for each of the three kidney cell types. The performance of

the cell type–specific cytotoxicity prediction is good but not as

accurate as the prediction of pan-cytotoxic compounds. This is

not surprising since the data used for defining and testing pan-

cytotoxic compounds are based on multiple cell lines and thus are

statistically more robust than data generated from a single cell

1-Specificity

ytivitis
ne

S

FIG. 4. ROC curves for the prediction of hepatotoxic compounds using

three different modeling approaches: WFS, Naive Bayesian, and SMO (logistic

model). WFS is as shown the superior method of the three.
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line. Comparing the prediction results for the three kidney cell

types, the predictive power of the rat proximal tubule cell toxicity

model, with an AUC of 0.60, is notably lower than the ones for

HEK293 and human mesangial cells, with AUCs of 0.70 and

0.68, respectively.

To investigate the cause for the lower performance of the

proximal tubule cytotoxicity prediction model, we examined

the data reproducibility within the three kidney cell types using

the 253 compounds present in both the EPA and the NTP

collections and thus tested in replicates. The activity of

a compound was designated as ‘‘reproduced’’ if both the

NTP and the EPA copy produced a class 4 curve or both

produced a nonclass 4 curve (i.e., 1, 2, or 3) in a given cell

type. The percentage of the 253 compounds that reproduced for

each cell type is listed in Table 3, which shows that data

generated from the HEK293 cells were the most reproducible

with 93% of the 253 compounds reproducing; data generated

using the human mesangial cells were slightly less reproducible

with 90% reproducibility; and data generated using the rat renal

proximal tubule cells were the least reproducible yielding 85%

reproducibility. Note all three values are within the expected

range of reproducibility of high-throughput screening data, and

the lower reproducibility of the rat proximal tubule cell data

may be that these are primary cells, and thus more susceptible

to variations in batch to batch preparations than the HEK293 or

human mesangial cells. Regardless of the reason, the re-

producibility of the data in the three cell types is directly

proportional to the accuracy (i.e., AUC) of their respective

cytotoxicity prediction models. These results clearly illustrate

the point that data quality is critical to deriving high-quality

models for toxicity prediction. When the rat proximal tubule

data were excluded from the analysis, the predictive power of

the pan-toxicity model improved to an AUC of 0.74.

Structural Diversity and Model Performance

The compound structures in each of the four-modeled data sets

are quite diverse, as indicated by the average pairwise Tanimoto

coefficient (Randic, 1997) (Daylight fingerprints) calculated for

each compound collection (Table 5), ranging from 0.13 to 0.16,

very small compared to the cutoff of Tanimoto � 0.7 commonly

used to define structurally similar compounds. When building

structure-based models, similarity between compounds, or specif-

ically toxic compounds in the case of toxicity prediction, in the

training and testing sets always helps. To evaluate the effect of

structural similarity/diversity on the performance of our models, we

calculated another metric, Tmax, defined as the Tanimoto score

(Leadscope fingerprints are used in this case because these are the

structural data used for our model building) between a compound in

the testing set and its most structurally similar toxic compound

in the training set. The average Tmax score for toxic compounds in

each data set is listed in Table 5. The hepatotoxicity compound set is

the most diverse structurally having the lowest average in-

trapopulation Tanimoto score (0.13) and with its toxic compounds

in the testing set least similar to those in the training set, as indicated

by it having the smallest average Tmax (0.32). At the other end of

the spectrum, the Salmonella compound set is the least diverse and

have both the largest intrapopulation Tanimoto score (0.16) and

Tmax (0.53). Consistent with the structural characteristics of these

data sets, the performance of the best model built for a data set is

found directly proportional to the structural similarity level between

the compounds within the data set (Table 5). However, it is

interesting to note the relationship between the structural diversity

of a data set and the best-performing algorithm found for that data

set. Table 5 shows that our WFS algorithm is the best-performing

algorithm for the structurally most diverse data set (hepatotoxicity)

and one of the best-performing algorithms for a structurally similar

data set (Salmonella). On the other hand, the SVM algorithm

(SMO) only performed well on the structurally most similar data

sets (Salmonella and cell viability). These results suggest that

because SVM-based algorithms rely on whole molecule similarity

(as measured by Tanimoto scores), their application to unrelated

compounds is limited, whereas the WFS approach can succeed

even when compound structures are highly diverse.

A fragment-based approach appears more suitable for accurate

toxicity predictions instead of whole molecule similarity. We

calculated the Tmax scores for all the compounds in the EPA

collection (the testing set) against the NTP collection (the

training set). Of the correctly predicted cytotoxic EPA

compounds, 77% had a Tmax < 0.7 and 26% had a Tmax

< 0.3. The correctly predicted cytotoxic EPA compound that was

the most dissimilar to any of the cytotoxic NTP compounds only

had a Tmax of 0.125. The fact that the model was able to correctly

identify toxic compounds in the testing set that were not

structurally similar (in terms of whole molecule similarity) to any

TABLE 4

AUCs of Model ROCs for the Prediction of EPA Compounds

Toxic to Specific Cell Types Using Significant Features

Generated from Training Data Sets (NTP Collection)

Cell type Reproducibility (%) AUC

HEK293 93 0.70

Mesangial cell 90 0.68

Rat renal proximal tubule 85 0.60

TABLE 5

Structural Diversity and Model Performance

Data set

Average

tanimoto

Average

Tmaxa
Best

model

Best model

ROC

Cell viability (EPA test) 0.15 0.38 SMO (logistic) 0.75

Caspase activation 0.15 0.33 Naive Bayesian 0.75

Salmonella 0.16 0.53 SMO (logistic)/WFS 0.78/0.77

Hepatotoxicity 0.13 0.32 WFS 0.67

aTanimoto score (Leadscope fingerprints) between a compound in the testing

set and its most structurally similar toxic compound in the training set.
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of the toxic compounds in the training set clearly shows that our

WFS model is not driven by whole molecule similarity. These

compounds were scored as toxic because they consist of features

that were identified as toxic in some (as opposed to just one)

compounds in the training set. Cytotoxic EPA compounds not

identified by the model (FN) were structurally more dissimilar to

the cytotoxic NTP compounds than the correctly predicted

compounds, with a median Tmax of 0.23. The structural features

that were responsible for their toxicity were either not

significantly enriched or not present in the toxic NTP

compounds. Interestingly, some toxic EPA compounds were

more similar to the nontoxic NTP compounds than the toxic NTP

compounds if judged by whole molecule similarity.

Data generated from a diverse set of chemicals are essential

for the development of robust structural predictors of various

toxicity end points. A learning curve analysis on the current

Tox21 compound collection (EPA and NTP) showed that it has

not reached a plateau in terms of structural diversity and

number of chemicals and that additional chemicals are required

to increase the diversity of this collection (Supplementary Fig.

1). To meet this goal, the Tox21 collaboration is currently in

the process of acquiring more chemicals to expand the

collection to about 10,000 chemicals.

Interpretability of the WFS Model

In this modeling work, we have tested whether the

overrepresentation of certain structural features is indicative

of a compound’s overall cytotoxicity and how this can be used

to predict the potential of compounds to induce cytotoxicity.

The end result is a simple and interpretable model for

cytotoxicity prediction based on compound structural features.

The model is heuristically attractive because it has a simple

chemical basis (i.e., compound activity can be directly linked

to structure components and functional groups). The modeling

results show that structural features enriched in toxic

compounds and the level of enrichment, as measured by a p
value, are predictive of compound toxicity. That is, compounds

that contain features overrepresented in many known toxic

compounds are also likely to be toxic. The level of enrichment

(i.e., the statistical significance of this enrichment) is also

important as compounds with more significantly enriched toxic

features are more likely to be toxic. This is the reason why we

choose to weigh the features by their significance of

enrichment and score compounds for their toxic potential

using p values. The predictive power of the model decreased

when simple presence or absence of toxic features was used to

score compounds instead of p values (data not shown). The size

of a compound is taken into consideration in the scoring

scheme as well such that the final score is adjusted by the total

number of structure features the compound has. The reason for

this treatment is that a large molecule with many insignificant

features could have a large sum of p values but is not

necessarily toxic or more likely to be toxic than a small

molecule with a few significant toxic features. This adjustment

has improved the performance of the model. Unlike most

classical modeling algorithms, the algorithm behind the WFS

model is simple and transparent, which allows easy imple-

mentation and interpretation of results.
We have developed a simple modeling algorithm, WFS, to

predict compound toxicological effects using statistical enrich-

ment of structural features. The models were trained and tested on

a series of cell viability and caspase activation qHTS data as well

as on Salmonella reverse mutagenicity data from the NTP and

hepatotoxicity data from the RTECS database. The predictive

power of the model for cytotoxicity prediction was further

validated on a completely orthogonal compound collection

independent of the collection used to train and test the model.

The performance of the WFS algorithm was compared with

traditional classification methods such as Naive Bayesian

clustering and SMO, a support vector machine approach. Our

WFS algorithm showed comparable or better predictive power

in most test cases. For hepatotoxicity prediction, the WFS

model, while of modest predictive power, seemed to outperform

the other classification algorithms. We have shown that this

comprehensive cytotoxic fingerprint approach has advantages

over whole molecule similarity methods, is simple to implement,

and produces results that are straightforward to interpret. With

further refinement, the WFS model may serve as a basis for

structural alerts of potentially cytotoxic compounds.

SUPPLEMENTARY DATA

Supplementary Tables 1–3 and Figure 1 are available online

at http://toxsci.oxfordjournals.org/.
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